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Abstract

Case notifications of pertussis have shown an increase in a number of countries with high rates of routine pediatric immunization.
This has led to significant public health concerns over a possible pertussis re-emergence. A leading proposed explanation for the
observed increase in incidence is the loss of immunity to pertussis, which is known to occur after both natural infection and
vaccination. Little is known, however, about the typical duration of immunity and its epidemiological implications. Here, we
analyze a simple mathematical model, exploring specifically the inter-epidemic period and fade-out frequency. These predictions
are then contrasted with detailed incidence data for England and Wales. We find model output to be most sensitive to
assumptions concerning naturally acquired immunity, which allows us to estimate the average duration of immunity. Our results
support a period of natural immunity that is, on average, long-lasting (at least 30 years) but inherently variable.
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Introduction

Pertussis has been an important cause of morbidity and

mortality for centuries [1] and remains a significant cause of

infant mortality worldwide [2]. During the 1940s and 1950s, many

industrialized countries implemented widespread pertussis immu-

nization programmes, which resulted in dramatic declines in

disease incidence. In the last decade, however, a growing number

of highly vaccinated countries, such as the US [3], Canada [4],

France [5] and the Netherlands [6], have reported an increasing

trend in the general incidence of pertussis. This potential

resurgence has raised serious concerns about the effectiveness of

current pertussis vaccination strategies [7–9] and whether pertussis

eradication is an achievable goal [10]. Our understanding of

pertussis epidemiology has been complicated by the accumulation

of evidence that in some individuals the immunity acquired from

natural infection is not permanent [11–13], as was traditionally

postulated [14,15]. The upsurge in reported incidence has led to

the hypotheses that loss of immunity to pertussis is more

widespread than previously thought, that vaccine-induced immu-

nity may wane more rapidly than that acquired from natural

infection, and that vaccination may have a greater impact on the

severity of disease rather than on the transmission of infection.

Accurate assessment of the duration of immunity after natural

infection or vaccination is crucial for pertussis control, and yet our

understanding of immunity to pertussis is limited. The central

obstacle is that despite a great deal of clinical research, it remains

impossible to correlate protection against pertussis with a

quantifiable immune response against a single protective antigen

[16–18]. This is partly because, in contrast to other vaccine-

preventable bacterial infections, such as diphtheria or tetanus,

where antibodies are known to protect against the toxin that

mediates disease, pertussis produces a range of toxins including

pertussis toxin, endotoxin, adenylate cyclase toxin and tracheal

cytotoxin, which are known to play a role in pathogenesis and

immune evasion [19]. Immunity to pertussis is further complicated

by the production of numerous virulence factors (filamentous

hemagglutinin, pertactin and fimbriae) that aid bacterial persis-

tence in the respiratory tract. Moreover, in addition to binding to

epithelial cells in the respiratory tract (which facilitates extracel-

lular multiplication), pertussis also survives within macrophages

and other cell types, an observation that argues for a role for cell-

mediated as well as humoral immunity in protection [19,20].

A recent review by Wendelboe et al. [21] of the handful of

published studies on duration of immunity suggested estimates in

the range 7–20 years for naturally acquired immunity and 4–12

years for vaccine-induced immunity against disease. The wide

range in estimates may be due to a combination of differences in

study methodology and pertussis epidemiology in different

countries. Recent estimates of naturally acquired immunity are

generally based on a very small set of studies conducted in the

vaccine era. Estimates of vaccine-induced immunity are often

difficult to make because vaccine efficacy (primary vaccine failure)

and waning immunity (secondary vaccine failure) are confounded,

and potentially affected by variation in vaccine content, manu-

facture and schedule.

PLoS Pathogens | www.plospathogens.org 1 October 2009 | Volume 5 | Issue 10 | e1000647



Given the challenges in understanding pertussis immunity using

clinical approaches, and the limitations of using cohort and case

series studies, a number of researchers have studied pertussis

transmission models to explore how waning immunity influences

pertussis epidemiology in the vaccine era [22,23], paying

particular attention to its consequences for the age-specific

serological profile [24] and the severity of disease [25]. However,

a systematic assessment of the degree of waning immunity that is

consistent with temporal and spatial incidence data, both in the

pre-vaccine and vaccine era, is lacking. As a first step toward

achieving this, we need testable predictions about the various

dynamical signatures we may expect to observe in epidemiological

data, such as the temporal patterns of outbreak dynamics, spatial

synchrony and fade-out structure. Here, we outline a simple model

for pertussis immunity and transmission and compare predictions

with epidemiological data for two key dynamical metrics–inter-

epidemic period and critical community size, defined as the

minimum population size above which pertussis remains endemic.

Methods

A model for pertussis immunity and transmission
To study the importance of waning immunity in shaping the

epidemiology of pertussis, we adopt an extension of the classic

Susceptible-Exposed-Infectious-Recovered (SEIR) paradigm that

accounts for reinfection and the possibility of both primary and

repeat infections. In Figure 1 we illustrate how the compartmental

model is set up, along with the system of deterministic differential

equations that formally describe the dynamics. We divide the

susceptible population into those who are naive to exposure (S1)

and those who have previously been infected or vaccinated (S2).

Similarly, exposed and infected individuals are divided into those

who are experiencing primary (E1, I1) and repeat infections (E2, I2)

[24], while the variable, R, represents all those who are recovered

and temporarily protected from natural infection. To incorporate

vaccination, we assume that a proportion, p, of newborns is

successfully immunized and enters the vaccinated class (V). The

parameter p, therefore, is a composite measure taking into account

both vaccine uptake and primary vaccine failure. Immunized

individuals may lose their immunity and become susceptible (S2).

We examine two distinct scenarios relating to the fate of S2

individuals who become exposed. First, in our basic model, we

assume they may experience repeat infections in a manner similar

to those who acquire immunity from natural infection. Or, second,

in our immune-boosting model, we assume that with probability e,

exposure may boost their immunity whereupon they revert to the

temporary immune class, R.

Distinguishing between primary and repeat infections will allow us

to consider how variations in disease severity (e.g. if repeat infections

are less symptomatic than primary infections) could potentially affect

reported case numbers. The distinction between infection and

disease plays a fundamental role in the hypothesis that natural or

vaccine-induced immunity is not permanent. Most severe cases of

typical pertussis still occur in the very young (infants who are not yet

immunized), which suggests that if repeat bouts of infection occur,

they result in reduced disease [25]. Because most reported cases are

those exhibiting clinically presenting symptoms, a key issue is how

important unknown infections are for pertussis transmission and thus

persistence. There are potentially two unseen cohorts: those with

atypical symptoms such as a persistent cough, who are probably

contributing to transmission; and those with asymptomatic infec-

tions, who are less likely to be contributing to transmission but are

boosting their own immunity and important to herd immunity. In

the model, loss of immunity is incorporated in a very simple manner:

we assume that immunity, although temporary, is complete, and that

it is lost at a constant rate represented by an for naturally acquired

immunity and av for vaccine-induced immunity.

To explore the consequences of different assumptions about

waning immunity and the role of repeat infections, we develop a

stochastic event-driven analogue of the model presented in Figure 1

(see, for example, [26]). Specifically, we transform our determin-

istic model into its stochastic analogue using an approximation to

Gillespie’s direct algorithm [27] known as the t-leap method

[28,29]. We use a time-step of 0.001 year (&0:365 day), which was

found to yield significant speed-up without sacrificing accuracy

when compared to Gillespie’s direct algorithm for some initial test

cases. We simulate the model for various population sizes as key

immunity and transmission parameters are systematically varied.

This allows us to investigate the realized inter-epidemic period and

critical community size in both the pre-vaccine and vaccine eras.

Parameter values
An important initial step in generating model predictions is

determining parameter values. Certain epidemiological and

demographic characteristics, such as the average length of the

latent and infectious periods [30] and the average life expectancy

(death rate21) are relatively well defined by independent data

(these parameter values are fixed throughout our investigations

and their values are listed in Table 1). In addition, we calculate

estimates of the range of birth rates over the period from

demographic data on the England and Wales cities. For simulation

purposes, we randomly choose a rate from the range in the pre-

vaccine era (and then decrease this in the vaccine era) for each

realization. With a fixed death rate, this leads to a non-stationary

population size that may affect the force of infection through

frequency-dependent transmission. To understand how this might

change model predictions, we conducted simulations in two

different ways: one where we recalculated the population size to

use in the force of infection, and another where we kept it fixed at

the initial size. For the range of birth rates used, and the length of

time series analyzed, both methods yielded very similar results.

By contrast, direct estimation of transmission rates is substantially

more problematic. In the past, employing results derived from

mathematical models, estimates of the average age at (first) infection

(Ap) have been used to infer transmission rates [31]. For pertussis,

this has resulted in the widely-used estimate of the basic

reproductive ratio, R0&L=Ap~17 in the pre-vaccine era in

England and Wales (based on Ap&4 and average life expectancy,

L~1=m, of 70 years). This estimate relies on the assumption of

permanent immunity, and so for our model we recalculate

transmission rates and R0 for different assumptions about waning

Author Summary

The eradication of vaccine-preventable infectious diseases
remains an important public health priority. To achieve this
goal, the level of immunity afforded needs to be high and
long-lasting. For pertussis, one of the leading causes of
mortality in infants, immunity has been shown to wane in
some individuals. The epidemiological impacts of this
observation depend critically on the duration of protective
immunity in the entire population, which remains notori-
ously difficult to estimate. We approach this problem by
exploring the agreement between model dynamics and
case notification data from England & Wales. Our estimates
suggest the average duration of immunity is much longer
than is currently thought (at least 30 years), but that some
individuals would lose immunity quite rapidly.

Estimating Pertussis Immunity

PLoS Pathogens | www.plospathogens.org 2 October 2009 | Volume 5 | Issue 10 | e1000647



immunity, using the same estimates of Ap and L (see Appendix S1 for

details). In general, if we fix the average age at infection, waning

immunity results in a reduction in the estimated value of R0, via a

reduction in transmission rates. This is entirely intuitive: an

infectious disease which does not confer long-lasting immunity

does not need to be as transmissible to attain the same prevalence as

one that results in permanent immunity, because lower transmission

is offset by faster replenishment of the susceptible pool.

A potential pitfall of such an analysis would be to allow parameters

to vary independently because changes in assumed immunity

characteristics affect the basic reproductive ratio, R0 (see Appendix

S1 for details; [29]). Therefore, in order to ensure our model

dynamics conform to important epidemiological observations [31],

we constrain our transmission traits as immunity parameters are

varied to keep the mean age at primary infection fixed at 4 years.

To compare our model predictions to data, we record new cases

(new arrivals to the recovered class) and assume that 15% of

primary infections are reported and only 1% of repeat infections

(below, we discuss the effects of varying the reporting rate). Our

primary reporting rate was calibrated (in the pre-vaccine era and

in the absence of reporting repeat infections) so that the number of

case reports predicted by the model quantitatively agrees with

observed values in the England and Wales data and is supported

by the work of Clarkson & Fine [32]. This calibration holds as we

vary certain transmission and immunity parameters, because by

fixing the age at primary infection, the equilibrium level of

primary infections does not depend on the number of repeat

infections (see Appendix S1).

Results

Inter-epidemic periods
We begin by comparing model predictions about the inter-

epidemic periods to observations from England and Wales in the

Figure 1. A model of pertussis immunity and transmission: an extension of the SEIR paradigm that allows for reinfection and
gamma-distributed infectious periods. The parameter n denotes the background birth rate, m the background death rate, bij is the transmission
rate from infected individuals Ij to susceptible individuals Si, and 1=ci is the average length of infectiousness, where i, j = 1 represents primary
infections and i, j = 2 represents repeat infections. To mimic the opening and closing of schools, which affects transmission between children [40], we
assume that b11(t)~b1(1za) during term time and b11(t)~b1(1{a) during school holidays [41]. In addition, because we would like to focus on the
relative infectiousness of repeat infections to primary infections (g), and the relative magnitude of the contact rates, we rewrite the transmission rates
as b12~gxb0 , b21~xb0 and b22~gjb0 , where b0 is the average transmission rate from individuals with a primary infection to naive individuals.
Following the work of Nguyen & Rohani [42], we assume that the infectious period is gamma-distributed with shape parameter n = 4. The parameter e
represents the probability that susceptible (but previously infected or vaccinated) individuals, upon exposure, boost their immunity instead of
becoming infectious. In the basic model, e~0 and in the immune-boosting model, 0veƒ1.
doi:10.1371/journal.ppat.1000647.g001
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pre-vaccine era (1945–1957, inclusive) and vaccine era (1958–

1972, inclusive) when inter-epidemic periods were in the range 2–

3 years and 3–4 years respectively [26,33,34]. Figure 2 summa-

rizes the dominant periods of fifty stochastic realizations of the

basic model for 20 different population sizes (from 75,000 to 1.5

million, a range which represents all sizes of city in the data) as we

vary the duration of immunity in the pre-vaccine and vaccine era.

Model results (black markers) are displayed below the same

analyses performed on the data (gray markers). The diameter of a

marker centered at a particular value of cycle period reflects the

proportion of time series for which that period was the dominant

signal. For example, in Figure 2A, if we consider the horizontal

line of markers corresponding to an average duration of immunity

of 10 years, we can see that most of the realizations result in time

series with a detectable dominant period of around 2.5 years. For

each set of realizations, represented by a different duration of

immunity, we compare the set of dominant periods to those found

in the data. The percentage overlap between the two sets is then

displayed to the right in each panel.

The observed and predicted periods exhibit variation due to

variability in birth rates, population sizes and stochastic effects. In

the pre-vaccine era, variation in the predicted inter-epidemic period

and the influence of annual term-time forcing decreases as the

duration of immunity is reduced. The parameter values that most

closely correspond to the data (63–69% overlap) are those which

result in an average duration of immunity of at least 60 years (the

best-fit is permanent immunity). With the introduction of

vaccination, the inter-epidemic period increases, but this is only

significant when natural immunity is relatively long-lived. In the

vaccine era, under the assumption that vaccine-induced immunity

lasts as long as natural immunity (Figure 2B), the parameter values

that most closely correspond to the data (76–88% overlap) are those

which result in an average duration of natural immunity of between

50 and 80 years (the best-fit is 60 years). If we take the extreme

position that vaccine-induced immunity is very short-lived, with an

average duration of 10 years (Figure 2C), then the overlap with the

data is the same or worse for all but permanent immunity. When we

consider the overlap between data and model output as we

systematically vary both natural and vaccine-induced immunity, we

find that for natural immunity greater than 40 years (excluding

permanent immunity), there is some optimum duration of vaccine-

induced immunity that gives rise to a high percentage overlap with

the data (see Figure S2). In general, the average of the two durations

appears to be between 50 and 60 years. Aggregating the results on

inter-epidemic periods from both eras, we find that average

durations of natural immunity of 60–100 years are consistent with

the data. In addition, vaccine-induced immunity is likely to be

shorter, in some cases much shorter, than natural immunity.

In Figure 3, we present parallel results of the periodicity analysis

for our immune-boosting model. Epidemic dynamics are most

parsimonious with pre-vaccination England and Wales data when

1=an is at least 50 years (Figure 3A). In the vaccine era, if the average

duration of vaccine-induced immunity is the same as that derived

from natural infection, the parameter values that most closely

correspond to the data (73–86% overlap) result in an average

duration of natural immunity of between 20 and 40 years, as shown

in Figure 3B. This range shifts to between 30 and 60 years if the

average duration of vaccine-induced immunity is fixed at 10 years

(Figure 3C). In general, including immune-boosting is dynamically

similar to increasing the average duration of immunity because

individuals experiencing immune-boosting are not infectious and

contributing to transmission. However, because the effect of boosting

is dependent on the repeat force of infection (l2), its impact varies

with the duration of natural immunity and the level of vaccination.

Table 1. Description and baseline values of parameters for the model. These are the values used unless otherwise stated.

Parameter Epidemiological description Value

Ap (pre-vaccine era) Average age at first infection 4 years

n (pre-vaccine era) Birth rate (0.012,0.028) year21

n (vaccine era) Birth rate pre-vaccine rate - 0.002

m Death rate 1/70 year21

1=s Average latent period 8 days

1=c1 Average infectious period for primary infections 15 days

1=c2 Average infectious period for repeat infections 15 days

b0 Average transmission rate from I1 to S1 see Appendix S1

a Relative amplitude of seasonal forcing 0.15

b1 Parameter in forcing function constrained b0

1za181=365

so that the average transmission rate is b0

g Relative infectiousness of repeat 1

to primary infections

x Ratio of contact rate between children and 0.5

adults to that between children

j Ratio of contact rate between adults 0.75

to that between children

e Immune-boosting probability 0 or 0.5

p (pre-vaccine era) Proportion of newborns successfully vaccinated 0

p (vaccine era) Proportion of newborns successfully vaccinated 0.6

doi:10.1371/journal.ppat.1000647.t001
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Critical community size
Next we explore whether critical community size (CCS) can

provide us with a further signature of waning immunity which may

be detected in the data. For both data and model output, we plot a

measure of the extinction frequency of the disease (fade-outs) against

population size. We considered two different definitions and both

produced similar results: the one we present here is the proportion

of weeks with zero cases; the other measure we considered is the

number of times at least 3 consecutive weeks have zero cases per

epidemic. In the pre-vaccine era, analyses of fade-outs in the

stochastic basic model demonstrate that the CCS increases

gradually as the duration of naturally acquired immunity increases

(Figure 4A). Analyses of the England and Wales data suggest a CCS

of between 150,000 and 250,000 (blue markers, Figure 4C). The

extremes of very rapid loss of immunity or permanent immunity

result in CCSs slightly below or above this range, respectively.

When vaccination is implemented, the CCS increases for all

durations of immunity, except that the increase is more dramatic as

the duration of immunity increases (Figure 4B). In the vaccine era,

data from England and Wales suggest a CCS of between 800,000

and 1 million (red markers, Figure 4C), which is consistent with a

substantial period of immunity but not permanent immunity.

Given the immunity parameters that we used in our investigations,

we also determine which parameter generates a distribution of fade-

outs that most closely resembles the data. We quantify this by fitting

an exponential curve to the data in the two eras and then asking how

well this curve fits the fade-outs predicted by the stochastic model, as

assessed by the square of the residuals (see Figure 4D). We find the

results to be inconclusive in the pre-vaccine era (blue lines) because

there is not enough of a distinction between the fade-out profiles. In

the vaccine-era (assuming av~an), the results are quite different: the

average duration of immunity that leads to the smallest error is 80 or

100 years. This error is significantly smaller than that for all durations

of 40 years and below. Similar conclusions are reached if we fix av at

the best-fit value from the periodicity data. This result is also robust to

variations in the reporting rate of repeat infections. In fact, the lowest

errors are obtained by discounting all case reports of repeat infections.

The results of our analyses of the model with immune boosting

(Figure 5) are qualitatively very similar to those for the basic model

(Figure 4). The most notable difference is observed in the vaccine

era, where we obtain the closest agreement with the England &

Wales data (resulting in the lowest squared residuals) for a much

wider range of durations of immunity: between 40 and 100 years.

Robustness to changes in transmission parameters
For the basic model, together with the specific transmission

parameters investigated above, it appears that natural immunity of

an average duration of between 60 and 100 years gives the most

parsimonious fit with the data as measured by inter-epidemic

period and fade-out profile. We are also interested in understand-

Figure 2. Basic model: analyses of the dominant periods of the England and Wales pertussis data (gray markers) compared to the
dominant periods of stochastic realizations of the pertussis reinfection model (black markers), as the duration of immunity is
varied. Panel A illustrates results for the pre-vaccine era, panel B for the vaccine era assuming that av~an, and panel C for the vaccine era fixing the
average duration of vaccine-induced immunity at 10 years (av~0:1). The diameter of the marker reflects the proportion of the 50 largest cities (data)
or 1000 simulations (model: 50 realizations are generated for 20 different population sizes) for which spectral analysis of weekly case reports reveals
that period to be the dominant signal (note: as we show in Figure S11, increasing the number of stochastic realizations does not qualitatively affect
our findings). Any dominant period not significant at the 95% level is denoted as having a period of 0 years. The average normalized power for each
dominant signal is illustrated in Figure S1. The length of time series analyzed is 13 years in the pre-vaccine era, and 15 years in the vaccine era. The
percentages displayed to the right of each panel are the overlap between the data and the model output. Parameter values for the model are given
in Table 1, with e~0. The population size, N, is varied from 75,000 to 1.5 million. To allow for the reintroduction of infection following extinction in a
single population, we include a background force of infection of 50/million/yr (results are similar if we assume 10/million/yr). The axis representing
the average duration of immunity is not to scale between 100 years (an~0:01) and permanent immunity (an~0).
doi:10.1371/journal.ppat.1000647.g002
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ing how model predictions change as we alter key transmission

parameters that are difficult to estimate empirically. The

parameter x represents the ratio of the contact rate between

children and adults to the average contact rate between children.

Decreasing the parameter to x~0:1 results in the same estimate of

60–100 years for the duration of natural immunity (Figures S3 and

S4). The parameter g represents the relative infectiousness of

repeat infections to primary infections; decreasing g reduces the

influence of repeat infections on the transmission process by

reducing their contribution to the force of infection, which is

dynamically very similar to increasing the immune-boosting

parameter e. If g is close to zero, then primary infections are

responsible for almost all transmission so the duration of immunity

only plays a role in the prevalence of repeat infections. Because

asymptomatic infections are almost certain to go undetected, it is

unlikely that data can distinguish between different durations of

immunity in this case. However, if repeat infections are such that

g~0:5, the same analyses carried out for g~1 give similar results

(Figures S5 and S6), with the most parsimonious range of duration

of natural immunity shifting to 30–80 years. As is the case for the

immune-boosting model when e~0:5.

Discussion

Obtaining an accurate assessment of the duration of pertussis

immunity is essential for informing pertussis vaccination policy [35].

In this paper, we have attempted to explore this question by

interrogating transmission models to ascertain the duration of

immunity that is most parsimonious with historical case notification

data from England & Wales. We find that, irrespective of model

choice, assuming a very short duration of natural immunity (on

average less than 30 years) or permanent immunity generates

predictions inconsistent with the pre-vaccine and vaccine era data

from England and Wales. Shorter durations of immunity to pertussis

lead to no increase in the inter-epidemic period and only a small

increase in the CCS. Permanent immunity to pertussis results in a

dramatic increase in inter-epidemic period and CCS. Our analyses

found that a range of durations of naturally acquired immunity is

consistent with the pre-vaccine and vaccine era data. If repeat

infections are as infectious as primary infections with no immune-

boosting then this range is 60–100 years, if they are half as infectious

or 50% lead to immune-boosting infections, then this range is 30–80

years. These values are robust to changes in primary-repeat contact

rates and variation in the reporting rate of repeat infections.

Our estimates of the average duration of natural immunity are

somewhat higher than those reported in the epidemiological

literature [21]. This may be in part because it is difficult to conduct

a study to detect and fully sample the entire distribution of waning

immunity periods amongst individuals in a population. Second, we

have made a key assumption about waning immunity in our model

that our predictions may rely on. The assumption, which is

inherent to the standard SEIRS models, is that duration of

Figure 3. Immune-boosting model: analyses of the dominant periods of the England and Wales pertussis data (gray markers)
compared to the dominant periods of stochastic realizations of the pertussis reinfection model with immune boosting (black
markers), as the duration of immunity is varied. Panel A illustrates results for the pre-vaccine era, panel B for the vaccine era assuming that
av~an , and panel C for the vaccine era fixing the average duration of vaccine-induced immunity at 10 years (av~0:1). The diameter of the marker
reflects the proportion of the 50 largest cities (data) or 1000 simulations (model: 50 realizations are generated for 20 different population sizes) for
which spectral analysis of weekly case reports reveals that period to be the dominant signal. Any dominant period not significant at the 95% level is
denoted as having a period of 0 years. The length of time series analyzed is 13 years in the pre-vaccine era, and 15 years in the vaccine era. The
percentages displayed to the right of each panel are the overlap between the data and the model output. Parameter values for the model are given
in Table 1, with e~0:5. The population size, N, is varied from 75,000 to 1.5 million. To allow for the reintroduction of infection following extinction in a
single population, we include a background force of infection of 50/million/yr (results are similar if we assume 10/million/yr). The axis representing
the average duration of immunity is not to scale between 100 years (an~0:01) and permanent immunity (an~0).
doi:10.1371/journal.ppat.1000647.g003
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immunity is exponentially distributed. Therefore, there is

substantial variance around the mean (the coefficient of variation

is 1) and many individuals will lose immunity quickly and some

never at all. If we consider the time taken for 25% of the

population to lose immunity, estimates of the average duration of

immunity between 50 and 80 years would predict that this lies in

the range 14–23 years (see Figure 6). Moreover, more than 10% of

the population would have lost immunity within 10 years, which is

not in contradiction with clinical reports.

We extended both models to consider a gamma-distributed

immune period (with two classes, leading to a coefficient of

variation of 0.7). This model was less parsimonious with the data,

especially in the pre-vaccine era when it predicted longer inter-

epidemic periods and higher CCSs (Figures S7, S8, S9 and S10).

What these results suggest is that pertussis immunity is inherently

variable, and efforts to understand waning immunity of pertussis

require knowledge of the distribution of immune periods.

Unfortunately, our analyses are less conclusive about the

average duration of vaccine-derived immunity. However, for the

range of natural immunity consistent with the pre-vaccine era

data, the corresponding durations of vaccine-derived immunity

that give the best agreement with the data in the vaccine era are

generally shorter than the duration of natural immunity (and are

very short for the longest durations of natural immunity). Parsing

out the effects of different durations of vaccine-derived immunity

will require longer time series and potentially better data on

‘‘silent’’ repeat infections. This could be approached by consid-

ering longer datasets from the vaccine era. However, later

perturbations in vaccine uptake (during the mid-1970s) and

changes in vaccine content and protocols add further complexity

to determining the duration of vaccine-induced immunity.

Our model analyses highlight a number of robust findings.

Assuming that asymptomatic infections are unobserved, we find

model output to be in strong agreement with empirical patterns as

Figure 4. Basic model: the effects of waning immunity on critical community size. Panels A and B illustrate analyses of weekly fade-outs in
the stochastic model in the pre-vaccine and vaccine era as the average duration of immunity (1=an) is varied. Panel C shows fade-out analyses for the
England and Wales data in the pre-vaccine (blue) and vaccine (red) eras: open circles denote data points and solid lines the best-fit exponential curve.
Panel D demonstrates the results of fitting model output to the fade-out curves shown in C, as assessed by the square of the residuals: the blue lines
represent the pre-vaccine era; the red lines represent the vaccine era assuming that vaccine-induced immunity is lost at the rate av~an . Solid lines
denote averages and dashed lines indicate the 90% confidence envelope. For the stochastic model, weekly fade-outs are calculated as the average
number of weeks per year with zero case reports, assuming a 15% primary reporting rate and 1% secondary reporting rate, averaged over 50
realizations for each population size. Parameter values for the model are given in Table 1, with e~0. In panels A, B and D, the axis representing the
average duration of immunity is not to scale between 100 years (an~0:01) and permanent immunity (an~0).
doi:10.1371/journal.ppat.1000647.g004
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we (i) increase the average duration of immunity (1=an), or (ii)

decrease the infectiousness of repeat infections (g) or (iii) increase

the probability that, upon exposure, there is immune boosting of

those whose immunity had waned (e). In turn, the implications of

these observations are that (i) natural pertussis infection induces,

on average, considerably long-lasting immunity, (ii) repeat

infections contribute relatively little to the transmission cycle,

and (iii) secondary exposures generate few infections (and may lead

mostly to immune boosting). Taken together, these conclusions

raise doubts over the impact of repeat infections in pertussis

dynamics. If correct, these findings represent reasonably encour-

aging news for pertussis control, indicating that a reduction in

prevalence (and an increase in the CCS) is possible with continued

focus on increasing vaccine uptake and reducing both primary and

secondary vaccine failure.

Although our study was not designed to address the issue of the

recent resurgence in pertussis in certain countries, our model

analyses, based on the England and Wales data, suggest that loss of

natural immunity is not the primary driver. Perhaps what we

should be focusing on are perturbations to pertussis dynamics in

the modern era. These may include demographic changes,

pathogen evolution, and perturbations in vaccine manufacture,

uptake and efficiency, all of which are likely to have significant

dynamical impacts. In particular, the vaccine era data considered

in this study span 1958–1972 when the whole cell vaccine was in

use. Extrapolation of our analyses to modern data with a variety of

acellular vaccines and a booster schedule would be difficult,

especially in light of known differences in the Th1/Th2 response

of the whole cell and acellular vaccines [19].

Finally, this work suggests a revision of estimates of the basic

reproductive ratio, or R0, of pertussis. As mentioned above, the

classic work of Anderson & May [31] has been pivotal in

suggesting that the R0 of pertussis is in the range of 14–17, with the

attendant control implications that vaccine coverage must be very

Figure 5. Immune-boosting model: the effects of waning immunity on critical community size. Panels A and B illustrate analyses of
weekly fade-outs in the stochastic model in the pre-vaccine and vaccine era as the average duration of immunity (1=an) is varied. Panel C shows fade-
out analyses for the England and Wales data in the pre-vaccine (blue) and vaccine (red) eras: open circles denote data points and solid lines the best-
fit exponential curve. Panel D demonstrates the results of fitting model output to the fade-out curves shown in C, as assessed by the square of the
residuals: the blue lines represent the pre-vaccine era; the red lines represent the vaccine era assuming that vaccine-induced immunity is lost at the
rate av~an . Solid lines denote averages and dashed lines indicate the 90% confidence envelope. For the stochastic model, weekly fade-outs are
calculated as the average number of weeks per year with zero case reports, assuming a 15% primary reporting rate and 1% secondary reporting rate,
averaged over 50 realizations for each population size. Parameter values for the model are given in Table 1, with e~0:5. In panels A, B and D, the axis
representing the average duration of immunity is not to scale between 100 years (an~0:01) and permanent immunity (an~0).
doi:10.1371/journal.ppat.1000647.g005
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high–in excess of approximately 93%–to achieve eradication.

Their estimates were based on the well-known relationship

between the mean age at (primary) infection and life expectancy,

derived from models assuming permanent immunity [29,31]. The

estimates of R0 in systems where immunity is not permanent are

substantially impacted by the duration of immunity [29].

Following our analyses, we find that, in the pre-vaccine era, the

corresponding values of R0 fall in the range 11–15 (Figure 7).

These values are lower than those commonly cited in the

epidemiological literature, and paint a somewhat rosier picture

regarding pertussis control. This conclusion, however, needs to be

tempered by the recognition that control of infectious diseases is

made much harder when using imperfect vaccines [36–38],

especially in the face of waning immunity [39].

Supporting Information

Figure S1 Reproduction of Figure 2 in the main text, with

marker color representing the average normalized power corre-

sponding to each dominant period. Panel A illustrates results for

the pre-vaccine era, panel B for the vaccine era assuming that

av = an, and panel C for the vaccine era fixing the average duration

of vaccine-induced immunity at 10 years (av = 0.1).

Found at: doi:10.1371/journal.ppat.1000647.s001 (0.36 MB TIF)

Figure S2 Basic model: the percentage overlap between the

dominant periods detected in the data and those detected in the

model output as both the duration of natural immunity (1/an) and

vaccine-induced immunity (1/av) are varied in the vaccine era.

Values of 1/av above 50 years give very similar results to 1/av = 50

(because we are only considering 15 years of time series in the

vaccine era.)

Found at: doi:10.1371/journal.ppat.1000647.s002 (0.12 MB TIF)

Figure S3 Basic model: the effects of waning immunity on inter-

epidemic period when the relative contact rate between children

and adults is very low (x = 0.1). Panel A illustrates results for the

pre-vaccine era, panel B for the vaccine era assuming that av = an,

and panel C for the vaccine era fixing the average duration of

vaccine-induced immunity at 10 years (av = 0.1). Compare to

Figure 2 in the main text.

Found at: doi:10.1371/journal.ppat.1000647.s003 (0.29 MB TIF)

Figure S4 Basic model: the effects of waning immunity on

critical community size when the relative contact rate between

children and adults is very low (x = 0.1). Panels A and B illustrate

analyses of weekly fade-outs in the stochastic model in the pre-

vaccine and vaccine era as the average duration of immunity (1/

an) is varied. Panel C shows fade-out analyses for the England and

Wales data in the pre-vaccine (blue) and vaccine (red) eras: open

circles denote data points and solid lines the best-fit exponential

curve. Panel D demonstrates the results of fitting model output to

the fade-out curves shown in C, as assessed by the square of the

residuals: the blue lines represent the pre-vaccine era; the red lines

represent the vaccine era assuming that vaccine-induced immunity

is lost at the rate av = an. Solid lines denote averages and dashed

lines indicate the 90% confidence envelope. Compare to Figure 4

in the main text.

Found at: doi:10.1371/journal.ppat.1000647.s004 (0.58 MB TIF)

Figure S5 Basic model: the effects of waning immunity on inter-

epidemic period when repeat infections are half as infectious as

primary infections (g = 0.5). Panel A illustrates results for the pre-

vaccine era, panel B for the vaccine era assuming that av = an, and

panel C for the vaccine era fixing the average duration of vaccine-

induced immunity at 10 years (av = 0.1). Compare to Figure 2 in

the main text.

Found at: doi:10.1371/journal.ppat.1000647.s005 (0.29 MB TIF)

Figure S6 Basic model: the effects of waning immunity on

critical community size when repeat infections are half as

infectious as primary infections (g = 0.5). Panels A and B illustrate

analyses of weekly fade-outs in the stochastic model in the pre-

vaccine and vaccine era as the average duration of immunity (1/

an) is varied. Panel C shows fade-out analyses for the England and

Figure 6. The proportion of individuals who have lost
immunity as a function of time since infection, under different
assumptions about the average duration of naturally acquired
immunity (1===an) and the distribution of the immune period. The
gamma-distributed periods are both with shape parameter k = 2,
equivalent to assuming two sub-classes.
doi:10.1371/journal.ppat.1000647.g006

Figure 7. The value of R0 as the degree of immune-boosting (e)
and the rate of waning immunity (an) are varied for a fixed
value of the mean age at primary infection. All other parameters
are defined in Table 1. The mathematical formula for R0 is given in
Appendix S1.
doi:10.1371/journal.ppat.1000647.g007
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Wales data in the pre-vaccine (blue) and vaccine (red) eras: open

circles denote data points and solid lines the best-fit exponential

curve. Panel D demonstrates the results of fitting model output to

the fade-out curves shown in C, as assessed by the square of the

residuals: the blue lines represent the pre-vaccine era; the red lines

represent the vaccine era assuming that vaccine-induced immunity

is lost at the rate av = an. Solid lines denote averages and dashed

lines indicate the 90% confidence envelope. Compare to Figure 4

in the main text.

Found at: doi:10.1371/journal.ppat.1000647.s006 (0.61 MB TIF)

Figure S7 Basic model: the effects of waning immunity on inter-

epidemic period when the immune class R is gamma-distributed

with k = 2. Panel A illustrates results for the pre-vaccine era, panel

B for the vaccine era assuming that av = an, and panel C for the

vaccine era fixing the average duration of vaccine-induced

immunity at 10 years (av = 0.1). Compare to Figure 2 in the main

text.

Found at: doi:10.1371/journal.ppat.1000647.s007 (0.29 MB TIF)

Figure S8 Basic model: the effects of waning immunity on

critical community size when the immune class R is gamma-

distributed with k = 2. Panels A and B illustrate analyses of weekly

fade-outs in the stochastic model in the pre-vaccine and vaccine

era as the average duration of immunity (1/an) is varied. Panel C

shows fade-out analyses for the England and Wales data in the

pre-vaccine (blue) and vaccine (red) eras: open circles denote data

points and solid lines the best-fit exponential curve. Panel D

demonstrates the results of fitting model output to the fade-out

curves shown in C, as assessed by the square of the residuals: the

blue lines represent the pre-vaccine era; the red lines represent the

vaccine era assuming that vaccine-induced immunity is lost at the

rate av = an. Solid lines denote averages and dashed lines indicate

the 90% confidence envelope. Compare to Figure 4 in the main

text.

Found at: doi:10.1371/journal.ppat.1000647.s008 (0.69 MB TIF)

Figure S9 Immune-boosting model: the effects of waning

immunity on inter-epidemic period when the immune class R is

gamma-distributed with k = 2. Panel A illustrates results for the

pre-vaccine era, panel B for the vaccine era assuming that av = an,

and panel C for the vaccine era fixing the average duration of

vaccine-induced immunity at 10 years (av = 0.1). Compare to

Figure 3 in the main text.

Found at: doi:10.1371/journal.ppat.1000647.s009 (0.29 MB TIF)

Figure S10 Immune-boosting model: the effects of waning

immunity on critical community size when the immune class R is

gamma-distributed with k = 2. Panels A and B illustrate analyses of

weekly fade-outs in the stochastic model in the pre-vaccine and

vaccine era as the average duration of immunity (1/an) is varied.

Panel C shows fade-out analyses for the England and Wales data

in the pre-vaccine (blue) and vaccine (red) eras: open circles denote

data points and solid lines the best-fit exponential curve. Panel D

demonstrates the results of fitting model output to the fade-out

curves shown in C, as assessed by the square of the residuals: the

blue lines represent the pre-vaccine era; the red lines represent the

vaccine era assuming that vaccine-induced immunity is lost at the

rate av = an. Solid lines denote averages and dashed lines indicate

the 90% confidence envelope. Compare to Figure 5 in the main

text.

Found at: doi:10.1371/journal.ppat.1000647.s010 (0.69 MB TIF)

Figure S11 Basic model: qualitatively similar findings when the

number of stochastic realizations is increased to 500 replicates per

population size. Panel A illustrates periodicity results for the pre-

vaccine era, panel B for the vaccine era assuming that av = an, and

panel C for the vaccine era fixing the average duration of vaccine-

induced immunity at 10 years (av = 0.1). Panels D and E illustrate

analyses of weekly fade-outs in the stochastic model in the pre-

vaccine and vaccine era as the average duration of immunity (1/

an) is varied. Panel F shows fade-out analyses for the England and

Wales data in the pre-vaccine (blue) and vaccine (red) eras: open

circles denote data points and solid lines the best-fit exponential

curve. Panel G demonstrates the results of fitting model output to

the fade-out curves shown in F, as assessed by the square of the

residuals: the blue lines represent the pre-vaccine era; the red lines

represent the vaccine era assuming that vaccine-induced immunity

is lost at the rate av = an. Solid lines denote averages and dashed

lines indicate the 90% confidence envelope. Compare to Figures 2

and 4 in the main text.

Found at: doi:10.1371/journal.ppat.1000647.s011 (0.65 MB TIF)

Appendix S1

Found at: doi:10.1371/journal.ppat.1000647.s012 (0.03 MB PDF)
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